Entire Invariant Solutions to Monge-ampère Equations
نویسنده
چکیده
We prove existence and regularity of entire solutions to MongeAmpère equations invariant under an irreducible action of a compact Lie group. We consider Monge-Ampère equations of the form f(∇φ) detDijφ = g(x) (0.1) where f and g are nonnegative measurable functions on R. We recall first the concept of a weak solution of (0.1). Let φ be a convex function. Then ∇φ is a well-defined multi-valued mapping: (∇φ)(x) is the set of slopes of all supporting hyperplanes to the graph of φ at (x, φ(x)). If B is a subset of R, let ∇φ(B) be its image in the multi-valued sense. Then φ is a weak solution of (0.1) if
منابع مشابه
Boundary Regularity for Solutions to the Linearized Monge-ampère Equations
We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.
متن کاملLift of Invariant to Non-Invariant Solutions of Complex Monge-Ampère Equations
We show how partner symmetries of the elliptic and hyperbolic complex Monge-Ampère equations (CMA and HCMA) provide a lift of non-invariant solutions of threeand two-dimensional reduced equations, i.e., a lift of invariant solutions of the original CMA and HCMA equations, to non-invariant solutions of the latter four-dimensional equations. The lift is applied to non-invariant solutions of the t...
متن کاملGlobal W2, p estimates for solutions to the linearized Monge–Ampère equations
In this paper, we establish global W 2,p estimates for solutions to the linearizedMonge–Ampère equations under natural assumptions on the domain, Monge– Ampère measures and boundary data. Our estimates are affine invariant analogues of the global W 2,p estimates of Winter for fully nonlinear, uniformly elliptic equations, and also linearized counterparts of Savin’s global W 2,p estimates for th...
متن کاملConvex Solutions of Systems Arising from Monge-ampère Equations
We establish two criteria for the existence of convex solutions to a boundary value problem for weakly coupled systems arising from the Monge-Ampère equations. We shall use fixed point theorems in a cone.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002