Entire Invariant Solutions to Monge-ampère Equations

نویسنده

  • ROGER BIELAWSKI
چکیده

We prove existence and regularity of entire solutions to MongeAmpère equations invariant under an irreducible action of a compact Lie group. We consider Monge-Ampère equations of the form f(∇φ) detDijφ = g(x) (0.1) where f and g are nonnegative measurable functions on R. We recall first the concept of a weak solution of (0.1). Let φ be a convex function. Then ∇φ is a well-defined multi-valued mapping: (∇φ)(x) is the set of slopes of all supporting hyperplanes to the graph of φ at (x, φ(x)). If B is a subset of R, let ∇φ(B) be its image in the multi-valued sense. Then φ is a weak solution of (0.1) if

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Regularity for Solutions to the Linearized Monge-ampère Equations

We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.

متن کامل

Lift of Invariant to Non-Invariant Solutions of Complex Monge-Ampère Equations

We show how partner symmetries of the elliptic and hyperbolic complex Monge-Ampère equations (CMA and HCMA) provide a lift of non-invariant solutions of threeand two-dimensional reduced equations, i.e., a lift of invariant solutions of the original CMA and HCMA equations, to non-invariant solutions of the latter four-dimensional equations. The lift is applied to non-invariant solutions of the t...

متن کامل

Global W2, p estimates for solutions to the linearized Monge–Ampère equations

In this paper, we establish global W 2,p estimates for solutions to the linearizedMonge–Ampère equations under natural assumptions on the domain, Monge– Ampère measures and boundary data. Our estimates are affine invariant analogues of the global W 2,p estimates of Winter for fully nonlinear, uniformly elliptic equations, and also linearized counterparts of Savin’s global W 2,p estimates for th...

متن کامل

Convex Solutions of Systems Arising from Monge-ampère Equations

We establish two criteria for the existence of convex solutions to a boundary value problem for weakly coupled systems arising from the Monge-Ampère equations. We shall use fixed point theorems in a cone.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002